Intrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel
نویسندگان
چکیده
The voltage-, time-, and K(+)-dependent properties of a G protein-activated inwardly rectifying K+ channel (GIRK1/KGA/Kir3.1) cloned from rat atrium were studied in Xenopus oocytes under two-electrode voltage clamp. During maintained G protein activation and in the presence of high external K+ (VK = 0 mV), voltage jumps from VK to negative membrane potentials activated inward GIRK1 K+ currents with three distinct time-resolved current components. GIRK1 current activation consisted of an instantaneous component that was followed by two components with time constants tau f approximately 50 ms and tau s approximately 400 ms. These activation time constants were weakly voltage dependent, increasing approximately twofold with maximal hyperpolarization from VK. Voltage-dependent GIRK1 availability, revealed by tail currents at -80 mV after long prepulses, was greatest at potentials negative to VK and declined to a plateau of approximately half the maximal level at positive voltages. Voltage-dependent GIRK1 availability shifted with VK and was half maximal at VK -20 mV; the equivalent gating charge was approximately 1.6 e-. The voltage-dependent gating parameters of GIRK1 did not significantly differ for G protein activation by three heterologously expressed signaling pathways: m2 muscarinic receptors, serotonin 1A receptors, or G protein beta 1 gamma 2 subunits. Voltage dependence was also unaffected by agonist concentration. These results indicate that the voltage-dependent gating properties of GIRK1 are not due to extrinsic factors such as agonist-receptor interactions and G protein-channel coupling, but instead are analogous to the intrinsic gating behaviors of other inwardly rectifying K+ channels.
منابع مشابه
Contributions of the C-terminal domain to gating properties of inward rectifier potassium channels
Two inward rectifier potassium channels, the G protein-dependent GIRK1 and the G protein-independent BIR10, display large differences in rectification and macroscopic kinetics. A chimeric channel was constructed in which the putative intracellular carboxy-terminal domain of the G protein-dependent channel replaced the corresponding domain of the G protein-independent channel. The chimeric chann...
متن کاملMolecular Coupling between Voltage Sensor and Pore Opening in the Arabidopsis Inward Rectifier K+ Channel KAT1
Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is, however, an inward rectifier. Here we...
متن کاملIntrinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal Mg2+
Inward rectifier (IR) currents were studied in bovine pulmonary artery endothelial cells in the whole-cell configuration of the patch-clamp technique with extracellular K+ concentrations, [K+]o, ranging from 4.5 to 160 mM. Whether the concentration of free Mg2+ in the intracellular solution, [Mg2+]i, was 1.9 mM or nominally 0, the IR exhibited voltage- and time-dependent gating. The IR conducta...
متن کاملIRK1 Inward Rectifier K+ Channels Exhibit No Intrinsic Rectification
In intact cells the depolarization-induced outward IRK1 currents undergo profound relaxation so that the steady-state macroscopic I-V curve exhibits strong inward rectification. A modest degree of rectification persists after the membrane patches were perfused with artificial solutions devoid of Mg(2+) and polyamines, which has been interpreted as a reflection of intrinsic channel gating and le...
متن کاملGating Dependence of Inner Pore Access in Inward Rectifier K+ Channels
Cation channel gating may occur either at or below the inner vestibule entrance or at the selectivity filter. To differentiate these possibilities in inward rectifier (Kir) channels, we examined cysteine accessibility in the ATP-gated Kir6.2 channel. MTSEA and MTSET both block channels and modify M2 cysteines with identical voltage dependence. If entry is restricted to open channels, modificati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 106 شماره
صفحات -
تاریخ انتشار 1995